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A theory of acoustic measurement of the elastic 
constants of a general anisotropic solid 
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An acoustic wave approach is presented for the measurement of the twenty-one independent 
elastic constants of the most general linearly elastic anisotropic solid. The method requires that 
one be able to measure the density of the material, the velocities of the three modes of wave 
propagation in each of six directions, and the particle displacements associated with each of 
those modes. 

1. I n t r o d u c t i o n  
Generally, the measurement of  the anisotropic elastic 
constants of a material begins with an assumption that 
the axes of  symmetry and/or the planes of  reflective 
symmetry of the material are known. In the case of  a 
pure crystal this is a reasonable assumption. It is a 
more speculative assumption in the case where the 
material is not a pure crystal, for example if the 
material is a common geological, biological or con- 
struction material. The generalized Hooke's  law 
relates the stress tensor T~j to the strain tensor Ekm 

r~j = C,j~mr~m (1) 

where Cij~m are the components of  the elasticity tensor. 
In general there are twenty-one distinct components of  
the elasticity tensor. Although for specific anisotropic 
material symmetries relative to specific co-ordinate 
systems there are less than twenty-one distinct and 
non-zero components of  Cijem, in general, for most 
anisotropic material symmetries relative to arbitrarily 
selected co-ordinate systems there are twenty-one 
distinct and non-zero components of Co~ m. The 
representations of  the elasticity tensor Cok m for specific 
material symmetries, worked out by Voigt in the last 
century and described in many textbooks [1, 2], only 
hold for co-ordinate systems peculiar to the symmetry 
being represented. These co-ordinate systems are 
determined by the axes of symmetry and planes of  
reflective symmetry that describe a particular material 
symmetry. 

If  the particular type of  material anisotropy of  a 
specimen is unknown, then relative to an arbitrarily 
selected co-ordinate system the material must be 
assumed to have twenty-one distinct and non-zero 
components of  Cok m. Cowin and Mehrabadi [3] have 
recently presented a method of  identifying elastic 
material symmetries if one is given the components of  
C~jk,, relative to an arbitrary co-ordinate system. 
The problem of  material symmetry identification 
is thus reduced to the measurement of  the twenty-one 
components. Hayes [4] described a series of  static 
mechanical tests to measure the twenty-one com- 
ponents. However, traditional mechanical test methods 

are difficult to apply to a material that is both aniso- 
tropic and heterogeneous, and many materials are 
both anisotropic and heterogeneous. Heterogeneity 
requires that the test specimens be small in order to 
insure that the properties are nearly uniform through- 
out the test specimen. Anisotropy requires that tra- 
ditional mechanical tests be applied in several different 
directions in order to obtain enough information for 
the calculation of  all the components of Cijkm, as 
shown by Hayes [4]. Since it is not possible to fabricate 
many specimens from the same portion of  material, 
the combined effects of  heterogeneity and anisotropy 
make it impossible to measure anisotropic elastic 
properties by traditional mechanical testing methods. 

The problems induced in the measurement of elastic 
coefficients by anisotropy and heterogeneity, and the 
need for multiple specimens, can be eliminated by 
using test procedures involving elastic waves of  ultra- 
sonic frequency. Van Buskirk et  al. [5] describe a 
procedure in which all nine orthotropic elastic con- 
stants of  bone are determined from a single 5 mm 
cubical specimen. The method consists of  assuming 
orthotropic symmetry and the orientation of the axes 
of symmetry on the basis of visual inspection, then 
determining the longitudinal and two shear wave 
velocities along each of the three orthotropic symmetry 
axes. Along the 45 ~ axis bisecting the angle between 
each of  the orthotropic symmetry axes the quasi- 
longitudinal and quasi-transverse wave velocities are 
determined. These 15 wave velocities and the density 
of the specimen can be used to determine the nine 
orthotropic elastic constants and some internal checks 
on the consistency of the values of  the constants. Van 
Buskirk et  al. [5] used a pulse transmission method to 
determine wave velocity. Ashman et al. [6] introduced 
a continuous wave technique for the measurement of 
wave velocity and document the anisotropy and 
heterogeneity of the bone-tissue in the human and 
canine femur. Recently Ashman et  al. [7] employed 
the continuous wave method to show that the cortical 
bone tissue of  the canine mandible was elastically 
isotropic and homogeneous. They assumed that the 
material was orthotropically elastic and heterogeneous 
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and employed the statistical method known as two 
factor analysis of  variance with repeated measures on 
the experimentally determined coefficients to demon- 
strate the elastic isotropy and homogeneity. 

The experimental method consisting of the passage 
of waves of  ultrasonic frequency in many directions 
through the same specimen can be extended to the 
determination of  the twenty-one components C~ikm 
relative to an arbitrary, but known, co-ordinate system, 
if one assumes that the direction of particle displace- 
ment as well as the wave speed associated with the 
three principal waves propagating in a particular 
material direction can be measured. In this paper we 
present the theoretical developments which relate the 
twenty-one components of Cijkm t o  the density of  the 
material and the three principal wave speeds and 
directions of particle displacement in six different 
directions through a material specimen. 

Elastic wave propagation is reviewed briefly in 
the next section and formulae relating the components 
of C~jkm to the acoustic wave measurements are 
developed in the section following that. In the final 
section we sketch an experimental protocol for the 
implementation of  the formulae developed. 

2. Elastic wave  propagat ion 
In the absence of body forces the equation of motion 
for a continuum body is 

T~j,j = 0//i (2) 

where T~j is a component of the stress tensor relative to 
a Cartesian basis we denote by el, e2 and e3.0 is the 
density, and u~ is a component of the displacement 
vector. The comma represents partial differentiation 
and the dot denotes a derivative with respect to 
time. The usual summation convention is employed. 
Equation 1 is the constitutive equation for a linearly 
elastic anisotropic material. The relationship between 
the strain tensor and displacement is given by 

Ekm = 1 U ~( k,m "~- Lira,k) ( 3 )  

If  we introduce Equations 2 and 3 into Equation 1 and 
employ the symmetry properties of the elasticity tensor 
we obtain 

CijkmUk,mj = Qi~ i (4) 

If  now we assume a plane wave propagating in the 
direction n with components n~, the displacement is 

Ui = ai e("j~j-'') ( 5 )  

where a~ is a component of the amplitude of  particle 
oscillation, x~ is a component of the particle position, 
v is the speed of  wave propagation, and t is time. I f  we 

T A B L E  I 

S t resses  S t r a i n s  

(71 ~ TII  

0- 2 ~ T22 

0- 3 = T33 

0- 4 = T23 = T32 

0- 5 = T I 3  = T 3 I  

0" 6 = T23 = 7"32 

gl = E l l  

g2 ~ E22 

g3 ~ E33 

e 4 = 2E23 = 2E32 
e5 = 2Et3 = 2E31 

~;6 = 2EI2 = 2E2t 

introduce Equation 5 into Equation 4 we obtain 

akCijkmnjnm = Qv2 ai (6) 

We now introduce the notation 

Fik = CijkmFljnm (7) 

where F~k is a component of  the matrix known as the 
Kelvin-Christoffel stiffness matrix. Using this notation 
in Equation 6 we see that 

Fika k = ev2  ai ( 8 )  

If  for a tensor Lgi, w e  have the relationship 
Lijrnj = 2mi, then rni is a component of  an eigenvector 
of the tensor and 2 is the corresponding eigenvalue. 
Thus, ai is a component of an eigenvector of F~k and 
Qv 2 is the corresponding eigenvalue. 

F~k is a real symmetric matrix. Therefore for a wave 
propagating in any direction in a general anisotropic 
material there are three modes of  propagation, each 
with a different velocity and a different direction of  
particle displacement. The directions of  particle dis- 
placement for the three modes are given by the eigen- 
vectors of F/k and are orthogonal. The velocities of  the 
three modes are related to the eigenvalues, 2j, of  F~k 
through the equation 

vj = (2JQ) '/2 (9) 

We denote the three components of  the eigenvector 
associated with 2 i by av,  azj and a3j. 

As is customary in the discussion of linearly elastic 
anisotropic materials we introduce a single index 
notation for stress and strain as shown in Table I. In 
this notation the constitutive equation T~i = CijkmEkm 
becomes ~ = cue j where the summation convention is 
employed with a range of  six and c~j is known as the 
stiffness matrix. The twenty-one independent elastic 
constants are the components of  the symmetric stiffness 
matrix. The components of  the Kelvin-Christoffel 
stiffness matrix in terms of  the components of  the 
stiffness matrix, c~j, are shown in Table II. 

To summarize, if one knows the stiffness matrix for 
a material it is possible to determine the components 
of  the Kelvin-Christoffel stiffness matrix for any 
direction n with components ni. Using the Kelvin- 
Christoffel stiffness matrix for a particular direction, it 
is possible to determine the velocities and particle 
displacements for the three modes of wave propagation 
in that direction. The converse is also possible as we 
will show below. That  is to say, one can determine the 
components of  the Kelvin-Christoffel stiffness matrix 

T A B L E  I I  

Fit = n~c,, + n~c66 + n~cs. + 2nzn3cs6 + 2n3n,c,, + 2n,n=c,6 

F22 = n~c66 + n~c22 + n~c44 + 2n2n3c24 + 2n3nlc. + 2n,n2c=6 

1733 = n~cs5 + n~c44 + n~c,3 + 2n2n3c34 5- 2n3nlc35 + 2nln2c45 

5 2  = F=I = n~c,6 + n~c26 + n~c4, + n2n3(c46 + c25) 
5- n3nl(cl4 4- c56) 5- nln2(cl2 5- C66 ) 

1"13 = F31 = n~c15 4- n2c46 + n~c35 5- n2n3(c45 4- c36 ) 

5- n3nl(cl3 4- C55) 5- nln2(cl4 4- c56) 

F23 = 1"32 = n21c56 5- /'/2c24 5- /~2c34 4- n2//3(c44 5- c23) 

+ n3nt(c36 + c45) + nln2(c25 + c46) 
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T A B L E  I I I  T A B L E  V 

I"11 = a~,Qv~ + a~2~v ~ + a~3#v ~ 

F22 = a~,Qv~ + a~2Qv ~ + a~3~v ~ 

1 " 3 3  = a~,ev~ + a~2ev ~ + a~3Qv ~ 

r,~ = a, la2,cov ~ + a,2a22Qv ~ + a13a23~gv~ 

F13 = atla3toLv~ 4- a12a32Qv ~ 4- a13a33kgv~ 

]723 = a2, a32~v~ + a22a32ov 2 -F a23a33Qv~ 

for a particular direction from a knowledge of the 
velocities and particle displacements for the three 
modes of wave propagat ion in that direction. I f  one 
knows the components  of  six Kelvin-Christoffel  stiff- 
ness matrices, it is possible to determine all of  the 
components of  the stiffness matrix for the material. 

3. D e t e r m i n a t i o n  of  the  e last ic i ty  
tensor  f r o m  elast ic  w a v e  data  

Consider a rectangular co-ordinate system with unit 
basis vectors e; related to ei by an orthogonal tensor Q 
through the equations 

e; = Qmie'm (10) 

The components  of  the Kelvin-Christoffel stiffness 
matrix for a direction n with respect to e~ are given by 
the well known tensor t ransformation law 

F~ = Q,,~Q,iFmn. (11) 

Also, since the t ransformation is orthogonal 

Finn = Q,,,~QnjF~. (12) 

I f  the basis vectors e',. are the eigenvectors of  the 
Kelvin-Christoffel stiffness matrix, then 

0 0] 0 01 
[1-',.;.] = 2 z 0 = Cv~ 0 (13) 

0 23 0 ~v32 

and Qij = aii, the components  of  the eigenvectors. 
Thus we can write 

Fm, = amia , f~ .  (14) 

Therefore, if we know the density of  the material, the 
velocities of  the three modes of propagat ion in a 
particular direction, and the particle displacement 
associated with each of  those modes, we can determine 
each of  the components  of  the Kelvin-Christoffel 
stiffness matrix for that direction. The individual 
formulae are given in Table III .  

We now proceed to show how this approach can be 
used to determine the twenty-one independent elastic 
constants of  a general anisotropic material. Consider 

T A B L E  I V  

A D i r e c t i o n  o f  p r o p a g a t i o n  

| Ill ~ e I 

2 / t ~ e  2 

3 n = e  3 

4 n = 2 -m(e2  + e3)  
5 n = 2 -1 /2 (e l  + e3)  

6 n = 2 - t / 2 ( e  I + e2) 

c u = F , l ( 1 ) *  c22 = F22(2  ) 

c44 = ['33 (2)  = F22 (3)  

c55 = F33(1 ) = F H ( 3  ) 

C66 = F22(I  ) ~ F l l ( 2 )  

Cl5 = FI3(1 ) Ct6 = FI2(1 ) 

r = F23(2)  c26 = F I2 (2 )  

C34 = F23(3  ) C 3 5  = F I 3 ( 3  ) 

ct2 = 2 F t 2 ( 6 )  - c16 - ca6 - -  c66 

Cl3 = 2F13(5  ) - -  cl5 - -  C35 C55 
cz3 = 2F23(4) - c~4 - c34 - c44 

C14 = 2F13(6  ) - -  C15 - -  /746 - -  C 5 6  = 2 F I 2 ( 5  ) - -  Ct6 - -  c45 - -  C56 

C25 = 2F23 (6 )  - -  c24 -- c46 - -  r = 2 F 1 2 ( 4 )  - 6'26 - c46 - c45 

C36 = 2F23(5)  - -  C34 - -  s - -  C56 = 2F13(4)  - -  C35 - -  C45 - -  C46 

C33 = ]733(3 ) 

C56 = F23(1 ) 

c46 = F13(2 ) 

c45 = F i2(3  ) 

* N u m b e r  in  b r a c k e t  r e f e r s  t o  A - d i r e c t i o n  1 t o  6. 

a wave in the direction nl = el (i.e. nl = 1, n2 = 0, 
and//3 = 0 ) .  From Table II  we see that F11 = cll for 
this direction. From Table I I I  we see that 

2 2 2 2 2 2 
F l l  = Cll  ~ a l loy  1 -t- a12•"02 --]- a t 3 Q v  3 

Thus, if we can measure the velocities and particle dis- 
placements for the three modes of  a wave propagating 
in the e~ -direction, we have the information we need to 
determine ell. 

As another  example consider a wave in the direction 
n = l ( e  1 -}- e2)  (i.e. nl = 2 1/2 r/2 = 2 -1/2, and 

n3 = 0). F rom Table II  we see that FI2 = 1(cj2 + 
C16 -]- C26 "~  C66 ) or C12 = 2 F 1 2  - -  Cl6 - -  c26 - -  6'66. W e  

can find FIz using the formula in Table III ,  and it is 
possible to determine q6, c26 and c66 directly from 
other experiments. Thus, we can find c12. 

To measure all twenty-one elastic constants it is 
necessary to determine the velocities and particle 
displacements of  waves propagating in six different 
directions in a material. We denote these directions by 
A = 1, 2, 3, 4, 5 and 6. Six convenient directions are 
shown in Table IV. 

Using the designation F,j(A) to represent a com- 
ponent of  the Kelvin-Christoffel stiffness matrix 
associated with the A-direction, formulae for the 
twenty-one independent elastic constants of  the stiff- 
ness matrix are given in Table V. Formulae for Fii(A) 
are given in Table I I I  in terms of appropriate  mode 
velocities and eigenvector components.  

4. Remarks  on e x p e r i m e n t a l  m e t h o d  
In this section we discuss how the theory might be 
used to make actual measurements. A specimen in the 
form of  a cube is cut from the material. A Cartesian 
co-ordinate system with axes xl, x2 and x3 parallel to 
the edges of  the cube is designated. Consider first wave 
propagat ion in the x~-direction. We do not know 
a priori  the directions of  particle oscillation for the 
three modes of propagat ion in that direction. Thus, it 
is necessary to generate a variety of  waves with 
dominant  particle oscillations in different directions. 
Ultrasound waves of  this nature can be generated 
using commercially available piezoelectric transducers. 
The arrival of  the wave at the other face perpendicular 
to the x~-axis is sensed by another transducer or set of  
transducers. Transducers are available which are 
sensitive to longitudinal oscillations and a shear oscil- 
lations. A longitudinal transducer would pick up the 
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Figure 1 An illustration of  the material of  the specimen that  is to be 
cut away. 

longitudinal component of  the wave and a shear trans- 
ducer could be used to find the transverse components. 
Shear transducers are sensitive to oscillations in a 
particular direction. Thus, it is necessary to be able to 
rotate the shear transducer through 180 ~ to find the 
dominant transverse components. Once the three 
modes of particle oscillation for a propagating wave 
have been determined, waves are generated in which 
each of these is the dominant one. Wave speeds are 
determined using these "dominant  mode" waves. 

Once the wave speeds and particle oscillations for 
the three modes of wave propagation in the xl-direction 
have been determined, the measurement is repeated in 
the x2- and x3-directions. Using the information 
gathered in these three measurements, it is possible to 
determine the fifteen elastic constants in the top three 
groups in Table V. 

The specimen is then cut on the edge of  the surfaces 
perpendicular to the xl- and xz-directions such as to 
form two faces with unit normals n = __ 2-t/Z(e~ -t-- e2) 
as shown in Fig. 1. The basic measurement is repeated 
for waves propagating between these two faces. Two 
more sets of  cuts need to be made on the specimen. 
One set produces faces with unit normals n = _ 2 -2/2 

(e~ + e3) and the other set produces faces with unit 
normals n = + 2-1/2 (e 2 -t- e3). The appearance of the 
specimen after the cuts have been made is shown in 
Fig. 2. The basic measurement is again performed in 
these two directions. Using nine of  the fifteen elastic 
constants found in the first three measurements and 
the information found in the last three measurements, 
we can determine the remaining six elastic constants of  
the stiffness matrix. 

/ / I"- . ,  
J 

`` "~`` [ j / /  

x 5 
x 2 ~  xl 

Figure 2 A sketch of the appearance of  the specimen after all the 
cuts have been made. 
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